\

(1)

\

Given polynomial : z6 - 17z4 + 16z2

\

To find factors equate polynomial to zero.

\

z6 - 17z4 + 16z2

\

Take term z2 as common

\

z2 ( z4 - 17z2 + 16 )

\

Solve above two terms separately.

\

z2 =0  and  ( z4 - 17z2 + 16 ) = 0

\

Step 1 :

\

Solve z2 = 0

\

By using zero product property

\

z = 0 , 0

\

Step 2 :

\

Solve  z4 - 17z2 + 16  = 0    ------------------- (1)

\

Consider z2 = k

\

Then equation (1) become

\

k2 - 17k + 16  = 0

\

k2 - 16k - k + 16  = 0

\

k ( k - 16 ) - 1 ( k - 16 )  = 0

\

( k - 1 ) ( k - 16 ) = 0

\

Substitute k = z2

\

( z2 - 1 ) ( z2 - 16 ) = 0

\

Substitute z2 - 1 = ( z - 1 ) ( z +1 )    and   z2 - 16 = ( z - 4 ) ( z + 4 )

\

( z - 1 ) ( z +1 ) ( z - 4 ) ( z + 4 )= 0

\

By using zero product property

\

z = 1 , - 1 , 4 , - 4

\

Combined solution is 0 , 0 , 1 , - 1 , 4 , - 4

\

Solution :

\

Factors for polynomial  z6 - 17z4 + 16z2 is 0 , 0 , 1 , - 1 , 4 , - 4.

\

\

(2) \ \

\

(t+3)²+8(t+3)+15 \ \

\

Apply formula : (a+b)² = a² + b² + 2ab \ \

\

t² + 3² + 2(t)(3) + 8(t+3) + 15 \ \

\

t² + 9 + 6t + 8t + 24 + 15 \ \

\

t² + 6t + 8t + 48 \ \

\

t ( t + 6 ) + 8 ( t + 6 ) \ \

\

( t + 6 ) ( t + 8 ) \ \

\

To find factors equate polynomial to zero. \ \

\

( t + 6 ) ( t + 8 ) = 0 \ \

\

By using zero product property. \ \

\

( t + 6 ) = 0   and  ( t + 8 ) = 0 \ \

\

t = - 6 , - 8 \ \