\
(1)
\Given polynomial : z6 - 17z4 + 16z2
\To find factors equate polynomial to zero.
\z6 - 17z4 + 16z2
\Take term z2 as common
\z2 ( z4 - 17z2 + 16 )
\Solve above two terms separately.
\z2 =0 and ( z4 - 17z2 + 16 ) = 0
\Step 1 :
\Solve z2 = 0
\By using zero product property
\z = 0 , 0
\Step 2 :
\Solve z4 - 17z2 + 16 = 0 ------------------- (1)
\Consider z2 = k
\Then equation (1) become
\k2 - 17k + 16 = 0
\k2 - 16k - k + 16 = 0
\k ( k - 16 ) - 1 ( k - 16 ) = 0
\( k - 1 ) ( k - 16 ) = 0
\Substitute k = z2
\( z2 - 1 ) ( z2 - 16 ) = 0
\Substitute z2 - 1 = ( z - 1 ) ( z +1 ) and z2 - 16 = ( z - 4 ) ( z + 4 )
\( z - 1 ) ( z +1 ) ( z - 4 ) ( z + 4 )= 0
\By using zero product property
\z = 1 , - 1 , 4 , - 4
\Combined solution is 0 , 0 , 1 , - 1 , 4 , - 4
\Solution :
\Factors for polynomial z6 - 17z4 + 16z2 is 0 , 0 , 1 , - 1 , 4 , - 4.
\ \(2) \ \
\(t+3)²+8(t+3)+15 \ \
\Apply formula : (a+b)² = a² + b² + 2ab \ \
\t² + 3² + 2(t)(3) + 8(t+3) + 15 \ \
\t² + 9 + 6t + 8t + 24 + 15 \ \
\t² + 6t + 8t + 48 \ \
\t ( t + 6 ) + 8 ( t + 6 ) \ \
\( t + 6 ) ( t + 8 ) \ \
\To find factors equate polynomial to zero. \ \
\( t + 6 ) ( t + 8 ) = 0 \ \
\By using zero product property. \ \
\( t + 6 ) = 0 and ( t + 8 ) = 0 \ \
\t = - 6 , - 8 \ \