(b)

\

The given system of equations are

\

  x1 -   x2 -  7x3  +  7x4 = 5

\

 -x1 +  x2 +  8x3  -   5x4 = -7

\

3x1 - 2x2 - 17x3 + 13x4 = 14

\

0 x1 - 0 x2 - 0  x3 + 0  x4 = 0

\

We can write above equations are in matrix form as

\

\"\"

\

R indicates Rows

\

C indicates Columns

\

R2 = R2+R1

\

R3 = R3-3R1

\

\"\"

\

\"\"

\

Interchange R3 with R2

\

\"\"

\

We can write above matrix is in equations form as

\

x1 -   x2 -  7x3  +  7x4 = 5           ----------------------------(1)

\

        x2 +  4x3  -  8x4 = -1          ---------------------------(2)

\

                  x3  + 2x4 = -2          ---------------------------(3)

\

Let x4 = k

\

Substitute x4 = k in equation (3)

\

x3  + 2(k) = -2

\

x3  = -2 - 2k

\

Substitute x4 = k and x3  = -2 - 2k  in equation (2)

\

x2 +  4(-2 - 2k)  - 8(k) = -1

\

x2 = -1 + 8k + 8k + 8

\

x2 = 7 + 16k

\

Substitute x2 = 7+16k , x4 = k and x3  = -2 + 2k in equation (1)

\

x1 - (7+16k) -  7(-2 + 2k) +  7(k) = 5

\

x1 = 5 + 7 +16k + 14 - 7k + 14k

\

x1 = 26 + 23k

\

Solution :

\

x1 = 26+23k

\

x2 = 7+16k

\

x3  = -2 - 2k

\

x4 = k