The given system of equations are

\

  x1 -   x2 -  7x3  +  7x4 = 5

\

 -x1 +  x2 +  8x3  -   5x4 = -7

\

3x1 - 2x2 - 17x3 + 13x4 = 14

\

2x1 -   x2 - 11x3 +   8x4 = 7

\

We can write above equations are in matrix form as

\

\"\"

\

R indicates Rows

\

C indicates Columns

\

R2 = R2+R1

\

R3 = R3-3R1

\

R4 = R4-2R1

\

\"\"

\

\"\"

\

Interchange R3 with R2

\

\"\"

\

R4 = R4-R2

\

\"\"

\

\"\"

\

R4 = R4+R3

\

\"\"

\

\"\"

\

R4 = R4/4

\

\"\"

\

\"\"

\

We can write above matrix is in equations form as

\

x1 -   x2 -  7x3  +  7x4 = 5           ----------------------------(1)

\

        x2 +  4x3  -  8x4 = -1          ---------------------------(2)

\

                  x3  + 2x4 = -2          ---------------------------(3)

\

                            x4 = -1      ---------------------------(4)

\

Substitute x4 = -1 in equation (3)

\

x3  + 2(-1) = -2

\

x3  = -2 + 2

\

x3  = 0

\

Substitute x4 = -1 and x3  = 0  in equation (2)

\

x2 +  4(0)  - 8 (-1) = -1

\

x2 = -1 - 8

\

x2 = -9

\

Substitute x2 = -9 , x4 = -1 and x3  = 0  in equation (1)

\

x1 - (-9) -  7(0) +  7(-1) = 5

\

x1 = 5 - 9 + 7

\

x1 = 3

\

Solution :

\

x1 = 3

\

x2 = -9

\

x3  = 0

\

x4 = -1