Given function : y = (lnx)x²
\Apply log each side with base e.
\lny = x²ln (lnx)
\Apply derivative with respect to x
\(d/dx)(lny) = (d/dx)(x²ln(lnx))
\Apply formulas : (d/dx)(UV)= V(dU/dx)+U(dV/dx) and (d/dx)(lnU) = (1/U)(dU/dx)
\Here consider U = x² and V = ln (lnx)
\(1/y)(dy/dx) =(ln(lnx))(d/dx)(x²)+(x²)(d/dx)(ln(lnx))
\Apply formulas : (d/dx)(f)n = (nfn-1)(df/dx) and (d/dx)(lnU) = (1/U)(dU/dx)
\(1/y)(dy/dx) =(ln(lnx))(2x)+(x²)(1/lnx) (d/dx)(lnx)
\Apply formula : (d/dx)(lnx) = 1/x
\(1/y)(dy/dx) =2xln(lnx)+(x²)(1/lnx) (1/x)
\(dy/dx) =y [ 2xln(lnx)+(x)(1/lnx)]
\Substitute y = (lnx)x²
\(dy/dx) =(lnx)x²[ 2xln(lnx)+(x/lnx) ]
\The solution is (dy/dx) =(lnx)x²[ 2xln(lnx)+(x/lnx) ].
\