Given identity : (cos³x - cosx + sinx)/cosx = tanx - sin²x
\Start from left hand side
\= (cos³x - cosx + sinx)/cosx
\= cos³x/cosx- cosx/cosx + sinx/cosx
\= cos²x - 1 + tanx
\Substitute trigonometric identity : sin²x + cos²x = 1
\= cos²x - (sin²x + cos²x) + tanx
\= cos²x - sin²x - cos²x + tanx
\= - sin²x + tanx
\= tanx - sin²x
\Hence (cos³x - cosx + sinx)/cosx = tanx - sin²x proved
\