Given

\

f(x) = √(x-12) \ \

\

Δx = x-x0 = 0.4 \ \

\

f(37) = √(37-12) = √25 = 5 \ \

\

f(37.4) = √(37.4-12) = √25.4 \ \

\

f(x) = √(x-12) \ \

\

Apply diffenceation. \ \

\

f \\'(x) = 1/[2√(x-12)] \ \

\

Substitute x = 37 \ \

\

f \\'(37) = 1/[2√(37-12)] \ \

\

f \\'(37) = 1/[2√(25)] \ \

\

f \\'(37) = 1/(2*5) \ \

\

f \\'(37) = 1/10 \ \

\

Formula for Linear Approximation : f(x) = f(x0) + (x-x0)f \\'(x0) \ \

\

Consider x = 37.4 and  x0 = 37 \ \

\

f(37.4) = f(37) + (0.4)f \\'(37) \ \

\

Substitute f \\'(37) = 1/10 \ \

\

f(37.4) = f(37) + (0.4)(1/10) \ \

\

f(37.4) - f(37) = 0.04 \ \

\

The solution is f(37.4) - f(37) = 0.04 \ \