Given function : 4a2x6ex2 \ \

\

\"image\"

\

\"\" \ \

\

First derive general solution for \"image\"

\

\"image\"

\

\"\"

\

Let u = x2n-1

\

u =(2n-2) x2n-2

\

Let dv=xex2

\

v = -½ ex2

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

Changing to polar coordinates : \"image\"

\

\"image\"

\

\"image\"

\

If r2 = u then rdr = du/2 \ \ \"image\"

\

Here angle gives π degrees.So

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

From hypothesis rule f is at 0 and n are derived

\

The general solution \"image\"

\

Given problem is

\

\"\"

\

Here n=3

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

The solution is 4a2x6ex2 dx = (15/16)√π \ \