\
\

Given

\

nCr-1 = 36

\

nCr+1= 126

\

nC = 84

\

nC r / nCr+1 = (r+1) / (n-r)

\

84/126 = (r+1) / (n-r)

\

2/3 = (r+1) / (n-r)

\

2(n - r) = 3(r + 1)

\

2n-2r = 3r+3

\

2n - 5r - 3 = 0

\

5r = 2n - 3

\

nCr/nCr-1 = (n-r+1) / r

\

84/36 = (n-r+1) / r

\

7/3 = (n-r+1) / r

\

3(n-r+1) = 7r

\

3n-3r+3=7r

\

3n-10r+3=0

\

3n-2×5r+3=0

\

Substitute 5r = 2n - 3

\

3n-2(2n - 3)+3=0

\

3n - 4n + 6 + 3 = 0

\

n = 9

\

5r = 2n - 3

\

Substitute n = 9

\

5r = 2*9 - 3

\

5r = 15

\

r = 3

\
\

Solution is r = 3

\