b) g(x) = 6x4 - 19x3 - 86x2 + 304x - 160 \ \

\

Rational Root Theorem, if a rational number in simplest form p/q is a root of the polynomial equation anxn + an  1xn – 1 + ... + a1x + a0 = 0, then p is a factor of a0 and q is a factor if an.

\

If p/q is a rational zero, then p is a factor of 6 and q is a factor of 1.

\

The possible values of p are   ± 1,  ± 2, ± 3,± 4, ± 8, ± 10, ± 20, ± 40, ± 80 and ± 160. \ \

\

The possible values for q are ± 1, ± 2, ± 3 and ± 6. \ \

\

By the Rational Roots Theorem, the only possible rational roots are, p/q = ± 1,  ± 2, ± 3,± 4, ± 8, ± 10, ± 20, ± 40, ± 80 , ± 60,±1/2, ±3/2, ±5, ±1/3, ±2/3, ±4/3, ±8/3, ±10/3, ±20/3, ±40/3, ±80/3, ±160/3, ± 1/6, ±5/3.

\

Make a table for the synthetic division and test possible real zeros.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

p/q

\
\

6

\
\

-19

\
\

-86

\
\

304

\
\

-160 \ \

\
\

1

\
\

6

\
\

-13

\
\

-99

\
\

205

\
\

45

\
\

2

\
\

6

\
\

-7

\
\

-100

\
\

104

\
\

48

\
\

3

\
\

6

\
-1 \

-89

\
\

37

\
\

- 49

\
\

4

\
\

6

\
\

5

\
\

-66

\
\

40

\
\

0

\
\

Since f(4) = 0,  x = 4 is a zero. The depressed polynomial is  6x3 + 5x2 - 66x + 40 = 0.

\

If p/q is a rational zero, then p is a factor of 40 and q is a factor of 6.

\

The possible values of p are   ± 1,  ± 2, ± 4, ± 5, ± 8, ± 10, ± 20 and ± 40.

\

The possible values of q are   ± 1,  ± 2, ± 3, and ± 6.

\

By the Rational Roots Theorem, the only possible rational roots are, p/q = ± 1,  ± 2, ± 4, ± 5, ± 8, ± 10, ± 20, ± 40, ±1/2, ±5/2, ±1/3, ±2/3, ±4/3, ±5/3, ±8/3, ±10/3, ± 20/3 , ±40/3, ±1/6,±5/6.

\

Make a table for the synthetic division and test possible real zeros.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

p/q

\
\

6

\
\

5

\
\

-66

\
\

40

\
\

1

\
\

6

\
\

11

\
\

-55

\
\

-15

\
\

2

\
\

6

\
\

17

\
\

-32

\
\

-24

\
\

- 4

\
\

6

\
\

-19

\
\

10

\
\

0

\
\

Since f(-4) = 0,  x = -4 is a zero. The depressed polynomial is  6x2 - 19x + 10 = 0 \ \

\

6x2 - 15x - 4x + 10 = 0

\

3x(2x - 5) - 2(2x - 5) = 0

\

(2x - 5)(3x - 2) = 0

\

x = 5/2, x = 2/3

\

\ \