\

Given equation : y = ( x + 2 )²

\

We can pre-assume values of x for given equation.

\

Table for corresponding values of x and y.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x( x + 2 )²y = ( x + 2 )²
-5( -5 + 2 )²9
-4( -4 + 2 )²4
-3( -3 + 2 )²1
-2( -2+ 2 )²0
-1( -1+ 2 )²1
0( 0+ 2 )²4
1( 1 + 2 )²9
\

The graph for above table is

\

\"\"

\

From above graph

\

Turning point is ( -2 , 0 ).

\

Axis of symmetry is determined using formula : x = -b/2a

\

y = ( x + 2 )²

\

y = x²+ 2² + 4x

\

y = x² + 4x + 4

\

By comparing with equation y = ax² + bx + c

\

a = 1 , b = 4

\

x = -b/2a

\

x = -4/2*1

\

x = -2

\

Solution :

\

Turning point is ( -2 , 0 ).

\

Axis of symmetry is x = -2

\