Given equation : y = ( x + 2 )²
\We can pre-assume values of x for given equation.
\Table for corresponding values of x and y.
\x | \( x + 2 )² | \y = ( x + 2 )² | \
-5 | \( -5 + 2 )² | \9 | \
-4 | \( -4 + 2 )² | \4 | \
-3 | \( -3 + 2 )² | \1 | \
-2 | \( -2+ 2 )² | \0 | \
-1 | \( -1+ 2 )² | \1 | \
0 | \( 0+ 2 )² | \4 | \
1 | \( 1 + 2 )² | \9 | \
The graph for above table is
\From above graph
\Turning point is ( -2 , 0 ).
\Axis of symmetry is determined using formula : x = -b/2a
\y = ( x + 2 )²
\y = x²+ 2² + 4x
\y = x² + 4x + 4
\By comparing with equation y = ax² + bx + c
\a = 1 , b = 4
\x = -b/2a
\x = -4/2*1
\x = -2
\Solution :
\Turning point is ( -2 , 0 ).
\Axis of symmetry is x = -2
\