Substitute the limits 1 ≤ y ≤ 9
\Let 2y-3 = u
\2dy = du
\dy = du/2
\And 2y-3 = u ⇒ y = (u+3)/2
\Let u² = k
\2udu = dk
\du = dk/2u
\Let 13k-81 = p
\13dk = dp
\dk = dp/13
\And 13k-81 = p ⇒ k = (p+81)/13
\Let √p = q
\1/2√pdp = dq
\dp = dq2√p
\dp = 2qdq
\And √p = q ⇒ p = q²
\q = √p
\q = √(13k-81)
\q = √(13u²-81)
\q = √(13(2y-3)²-81)
\Substitute intervals from 9 to 1
\