\

4) \ \

\

Train total mass m =1.8× 106 kg \ \

\

Rising height h = 700 m \ \

\

Traveling distance d = 53 km \ \

\

d = 53000 m \ \

\

Average speed v = 18 km/h \ \

\

v = 18*(5/18) m/s \ \

\

v = 5 m/s \ \

\

The acceleration of gravity g = 9.81 m/s² \ \

\

The frictional force is 0.8 percent of the weight \ \

\

Ff = ( 0.8 / 100 ) mg \ \

\

Ff = ( 0.8 / 100 )*1.8*106* 9.8 \ \

\

Ff = 141120 \ \

\ The power output of the train Pt = ? \ \ \

The kinetic energy of the train KE \ \

\

KE = ½mv² \ \

\

KE = ½(1.8× 106)(5)²

\

KE = 22.5× 10J \ \

\

At starting height is h1 = 0 m

\

At ending height is h2 = 700 m

\

Change in height  Δh = h2 - h1

\

Δh = 700 - 0

\ Δh = 700 m \

The total change in potential energy ΔPE = mgΔh \ \

\

ΔPE = (1.8× 106)(9.8)(700) \ \

\

ΔPE = 12348 × 10J \ \

\
\

The energy dissipated due to friction Ef = Frictional force x distance \ \

\

Ef = Ff x d \ \

\

Ef = 141120 x 53000 \ \

\

Ef = 7479360000 \ \

\

Ef = 7479.36 × 106  J \ \

\

Total energy Et = KE+PE+Ef \ \

\

Substitute KE = 22.5× 106 , PE = 12348 × 106 , Ef = 7479.36 × 106 \ \

\

Et = (22.5× 106)+(12348 × 106)+(7479.36× 106) \ \

\

Et = 19849.86 × 106  J \ \

\

Total force = Total energy / distance \ \

\

Ft = Et / d \ \

\

Ft = (19849.86 × 106 ) / 53000 \ \

\

Ft = 0.37452566 × 106 N \ \

\

Total power Pt = Total Force × velocity \ \

\

Pt = (Ft)v \ \

\

Pt = (0.37452566 × 106)(5) \ \

\

Pt = 1.87263 × 106 W \ \

\

Pt = 1.87263 MW \ \

\

The power output of the train is 1.87263 MW \ \