1)
\y = 1-2x²
\x=0 , dx= - 0.01
\Computing of dy :
\y = 1-2x²
\Apply derivative with respect to x
\dy/dx = 1-2*2x
\dy = (1 - 4x)dx
\Substitute x = 0 , dx = - 0.01
\dy = (1 - 4*0)(- 0.01)
\dy = - 0.01
\Computing of Δy :
\y = 1-2x²
\y(0) = 1-2*0² = 1
\y(-0.01) = 1-2(-0.01)² = 0.9998
\Δy = y(0) - y(-0.01) = 1 - 0.9998
\Δy = 0.0002
\Solution : dy = - 0.01 , Δy = 0.0002
\