Given equation :

\

x³ - cos(x²+3) = 0

\

Let f(x) = x³ - cos(x²+3)

\

x1 = 1

\

Find x2 = ?

\

f \\'(x) = 3x3-1 - (- sin(x²+3)) (2x)

\

f \\'(x) = 3x2 + 2xsin(x2+3)

\

According to Newton Method  \"image\"

\

x2 = x1 – [ f(x1) / f’(x1) ]

\

f(x1) = (x1)³ - cos(x1²+3)

\

f(x1) = (1)³ - cos(1²+3)

\

=  1 - cos4

\

=  1 - 0.99756

\

= 0.00244

\

f \\'(x1) =  3(x1)2 + 2x1sin(x12+3)

\

=  3(1)2 + 2*1*sin(12+3)

\

=  3 + 2sin(4)

\

=  3 + 0.1395

\

=  3.1395

\

x2 = 1 – [ 0.00244 / 3.1395 ]

\

x2 = 1 – 0.0007772

\

x2 = 0.999223

\

Solution :

\

x2 = 0.999223