Given equation :
\x³ - cos(x²+3) = 0
\Let f(x) = x³ - cos(x²+3)
\x1 = 1
\Find x2 = ?
\f \\'(x) = 3x3-1 - (- sin(x²+3)) (2x)
\f \\'(x) = 3x2 + 2xsin(x2+3)
\According to Newton Method
x2 = x1 – [ f(x1) / f’(x1) ]
\f(x1) = (x1)³ - cos(x1²+3)
\f(x1) = (1)³ - cos(1²+3)
\= 1 - cos4
\= 1 - 0.99756
\= 0.00244
\f \\'(x1) = 3(x1)2 + 2x1sin(x12+3)
\= 3(1)2 + 2*1*sin(12+3)
\= 3 + 2sin(4)
\= 3 + 0.1395
\= 3.1395
\x2 = 1 – [ 0.00244 / 3.1395 ]
\x2 = 1 – 0.0007772
\x2 = 0.999223
\Solution :
\x2 = 0.999223