Given function is

\

\"\" \ \

\

\"\"

\

Let dv = dx

\

v = x

\

Let u = ln (x²+1) and

\

du = [1/(x²+1)]2xdx

\

du = [1/(v²+1)]2vdv

\

du = [2v/(v²+1)]dv

\

d(uv) = udv + vdu

\

Apply integration both sides.

\

∫ d(uv) = ∫ ( udv + vdu )

\

uv = ∫ udv + ∫ vdu

\

∫ udv = uv - ∫ vdu

\

Now Substitute : u = ln (x²+1) , v = x , du = [2v/(v²+1)]dv  and dv = dx

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

= x ln (x²+1) - 2v + 2tan-1(v) + c

\

Substitute v = x

\

= x ln (x²+1) - 2x + 2tan-1(x)

\

Now substitute the limits

\

The lower bound = 0 \ \

\

The upper bound  = ex

\

= [ (ex) ln ((ex)²+1) - 2(ex) + 2tan-1(ex) ]  - [ 0 ln (0²+1) - 2*0 + 2tan-1(0) ]

\

= [ (ex) ln (e2x+1) - 2ex + 2tan-1(ex) ]  - [ 0 - 0 + 0 ]

\

= (ex)ln (e2x+1) - 2ex + 2tan-1(ex) \ \

\

Solution :

\

⌠ ln (x²+1) dx = (ex)ln (e2x+1) - 2ex + 2tan-1(ex)