Given function is
\ \ \
Let dv = dx
\v = x
\Let u = ln (x²+1) and
\du = [1/(x²+1)]2xdx
\du = [1/(v²+1)]2vdv
\du = [2v/(v²+1)]dv
\d(uv) = udv + vdu
\Apply integration both sides.
\∫ d(uv) = ∫ ( udv + vdu )
\uv = ∫ udv + ∫ vdu
\∫ udv = uv - ∫ vdu
\Now Substitute : u = ln (x²+1) , v = x , du = [2v/(v²+1)]dv and dv = dx
\= x ln (x²+1) - 2v + 2tan-1(v) + c
\Substitute v = x
\= x ln (x²+1) - 2x + 2tan-1(x)
\Now substitute the limits
\The lower bound = 0 \ \
\The upper bound = ex
\= [ (ex) ln ((ex)²+1) - 2(ex) + 2tan-1(ex) ] - [ 0 ln (0²+1) - 2*0 + 2tan-1(0) ]
\= [ (ex) ln (e2x+1) - 2ex + 2tan-1(ex) ] - [ 0 - 0 + 0 ]
\= (ex)ln (e2x+1) - 2ex + 2tan-1(ex) \ \
\Solution :
\⌠ ln (x²+1) dx = (ex)ln (e2x+1) - 2ex + 2tan-1(ex)