Given equations are
\x² + y² = 100 3x - y = 10
\Apply square both sides.
\(3 x - y)² = 10²
\9x² + y² - 6xy = 100
\8x² + x² + y² - 6xy - 100 = 0
\Substitute : x² + y² = 100
\8x² +100 - 6xy - 100 = 0
\8x² - 6xy = 0
\Substitute : 3 x - y = 10 ⇒ y = 3x - 10
\8x² - 6x(3x - 10) = 0
\8x² - 18x² + 60x = 0
\- 10x² + 60x = 0
\60x - 10x² = 0
\10x( 6 - x) = 0
\By using zero product property : If AB = 0 then A = 0 , B = 0.
\10x = 0 and ( 6 - x) = 0
\x = 0 and x = 6
\If x = 0
\3 x - y = 10 ⇒ y = - 10
\If x = 6
\3 x - y = 10 ⇒ y = 10 - 3*6 = - 8
\Solution :
\Given equations are two solutions
\1) x = 0 , y = - 10
\2) x = 6 , y = - 8
\