\"\"

\

\"\"

\

\"\"

\

\"\"

\

 

\

 

\

(a)

\

The temperature and Chirps/second data table is

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SNOTemperature °C XChirps/second YXY
120.08917804007921
2167211522565184
319.8931841.4392.048649
418.4841545.6338.567056
517.1811385.1292.416561
615.5751162.5240.255625
714.7701029216.094900
815.7721130.4246.495184
915.4691162.6237.164761
1016.3831352.9265.696889
1115.08012002256400
1217.2831427.6795.846889
1316.08112962566561
1417.08414282897056
1514.4761094.4207.365776
∑X = 248.5∑Y = 1192∑XY = 19988.5∑X² = 4657.89∑Y² = 95412
\

We make use of Linear Regression.

\

A linear Regression is in the form of y = a + bx

\

Where y is the chirps/second

\

x is the Temperature.

\

The values of a and b is given by

\

\"\"

\

\"\"

\

\"\"