\
\
(a)
\The temperature and Chirps/second data table is
\SNO | \Temperature °C X | \Chirps/second Y | \XY | \X² | \Y² | \
1 | \20.0 | \89 | \1780 | \400 | \7921 | \
2 | \16 | \72 | \1152 | \256 | \5184 | \
3 | \19.8 | \93 | \1841.4 | \392.04 | \8649 | \
4 | \18.4 | \84 | \1545.6 | \338.56 | \7056 | \
5 | \17.1 | \81 | \1385.1 | \292.41 | \6561 | \
6 | \15.5 | \75 | \1162.5 | \240.25 | \5625 | \
7 | \14.7 | \70 | \1029 | \216.09 | \4900 | \
8 | \15.7 | \72 | \1130.4 | \246.49 | \5184 | \
9 | \15.4 | \69 | \1162.6 | \237.16 | \4761 | \
10 | \16.3 | \83 | \1352.9 | \265.69 | \6889 | \
11 | \15.0 | \80 | \1200 | \225 | \6400 | \
12 | \17.2 | \83 | \1427.6 | \795.84 | \6889 | \
13 | \16.0 | \81 | \1296 | \256 | \6561 | \
14 | \17.0 | \84 | \1428 | \289 | \7056 | \
15 | \14.4 | \76 | \1094.4 | \207.36 | \5776 | \
∑ | \∑X = 248.5 | \∑Y = 1192 | \∑XY = 19988.5 | \∑X² = 4657.89 | \∑Y² = 95412 | \
We make use of Linear Regression.
\A linear Regression is in the form of y = a + bx
\Where y is the chirps/second
\x is the Temperature.
\The values of a and b is given by
\