.
\3a)
\The trigonometric function is sec x / tan x .
\Rewrite sec x = ( 1 / cos x ) and tan x = ( sin x / cos x ) .
\Cancel common terms .
\\
3b)
\The trigonometric function is (sec x – 1)(sec x + 1) .
\The above expression is in the form of (a+b)(a-b) = a2 - b2 .
\(sec x – 1)(sec x + 1) = sec2 x - 12 .
\(sec x – 1)(sec x + 1) = sec2 x - 1 .
\We know the trigonometric identity sec2 x - 1 = tan2 x .
\Therefore (sec x – 1)(sec x + 1) = tan2 x .
\\
3c)
\The trigonometric function is (sin x)(sec x) .
\Rewrite sec x = ( 1 / cos x ) .
\We know the trigonometric identity ( sin x / cos x ) = tan x .
\