Step 1:

\

The function is \"\"

\

The function is continuous for all values of x.

\

For a limit to exists, the left hand limit is always equal to right hand limit.

\

\"\".

\

 

\

Consider  \"\".

\

\"\"

\

Consider \"\".

\

\"\"

\

For a limit to exist, \"\".

\

\"\"     .....................Equation(1).

\

Step 2:

\

For a limit to exists, the left hand limit is always equal to right hand limit.

\

\"\".

\

 

\

Consider  \"\".

\

\"\"

\

Consider  \"\".

\

\"\"

\

For a limit to exist, \"\".

\

\"\"        .....................Equation(2).

\

Step 3:

\

Find the values of a and b.

\

Subtract equation(2) from equation(1).

\

\"\"

\

\"\"

\

Substitute \"\" in equation(1)

\

\"\"

\

The values are \"\" and  \"\".

\

Solution:

\

The values are \"\" and \"\".

\