Step 1:

\

(a) The parent function is \"\"

\

\"\"

\

Compare it to \"\"

\

\"\"

\

Amplitude\"\"

\

Period\"\"

\

\"\" \"\"

\

The left and right end points of one cycle interval determined

\

Solve the equations \"\" and \"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

The graph of g is obtained by a horizontal shrink of four and one cycle of g corresponding to the interval \"\".

\

Graph:

\

\"\"

\

Step 2:

\

(b) Graph of \"\".

\

Amplitude = 1

\

Period\"\"

\

Make a table to find the solutions that satisfies equations. 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x \

\"\"

\
\

y

\
\

(x, y)

\
\

\"\"

\
\

 \"\"

\
\

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
    \"\"
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
  \

\"\"

\
\

Draw the coordinate plane.

\

Plot the points found in the table and connect the curve.

\

\"\"

\

(c) The function g in terms of f.

\

\"\".

\