The system of equations are y = x 2 - 9 and y = - (x + 3)2 \ \
\Step 1: \ \
\Graph the two equations. \ \
\Make the table of values to find ordered pairs that satisfy the equations. \ \
\Choose values for x and find the corresponding values for y. \ \
\ \
x \ \ \ | \
\
y = x 2 - 9 \ \ \ | \
\
(x , y ) \ \ \ | \
- 2 | \y = (- 2)2 - 9 \ \ | \(- 2, - 5) \ \ | \
- 1 | \y = (- 1)2 - 9 \ \ | \(- 1, - 8) | \
\
1 \ \ \ | \
\
y = ( 1)2 - 9 \ \ \ | \
\
(1, - 8) \ \ \ | \
\
2 \ | \
\
y = (-2)2 - 9 \ \ \ | \
\
(2, - 5) \ \ \ | \
\
3 \ \ \ | \
\
y = (3)2 - 9 \ \ \ | \
\
(3, - 3) \ \ \ | \
\ \
\ \
x \ \ \ | \
\
y = - (x + 3)2 \ \ \ | \
\
(x , y ) \ \ \ | \
-6 \ \ | \ \
y = - (-6 + 3)2 \ \ \ | \
(-6, -9) \ \ | \
-4 \ \ | \ \
y = - (-4 + 3)2 \ \ \ | \
(-4, -1) \ \ | \
\
-2 \ \ \ | \
\
y = - (-2 + 3)2 \ \ \ | \
\
(-2, -1) \ \ \ | \
\
-1 \ \ \ | \
\
y = - (-1 + 3)2 \ \ \ | \
\
(-1, -4) \ \ \ | \
1. Draw a coordinate plane.
\2. Plot the points found in tables and draw a smooth curves through these points. \ \
\\
\ \
Observe the graph the two curves are intersecting at and
. \ \
Solution: \ \
\ and
. \ \
Check: \ \
\To check the solutions substitute the intersecting points in either of two equations. \ \
\Substitute the point in
. \ \
\ \
Since the above statement is true, is a solution of the quadratic system. \ \
Substitute the point in
. \ \
\ \
\ \
Since the above statement is true, is a solution of the quadratic system. \ \