Step 1 :

\

The function is \"\".

\

The tangent line of the function is horizontal, means that, the slope of the tangent line is zero.

\

Set slope = \"image\".

\

\"image\"

\

Apply formula : \"image\".

\

Apply power rule of derivatives : \"image\".

\

\"image\"

\

Step 2 :

\

Solve \"image\".

\

\"\"

\

If \"image\", then the general solution is \"image\", where \"image\" is an integer.

\

\"\".

\

If \"image\", then \"\",

\

If \"image\", then \"\",

\

If \"image\", then \"\", and ..............

\

At \"\", \"\"

\

At \"\", \"\"

\

At \"\", \"\", and .........

\

The points on the graph of the function are \"\".

\

Step 3 :

\

Solve \"image\".

\

\"image\"

\

If \"image\", then the general solution is \"image\", where \"image\" is an integer.

\

\"image\".

\

If \"image\", then \"image\",

\

If \"image\", then \"image\",

\

If \"image\", then \"image\", and ..............

\

At \"image\", \"image\".

\

At \"image\", \"image\".

\

At \"image\", \"image\", and .........

\

The points on the graph of the function are \"\", where \"image\" is an integer.

\

Solution :

\

The points on the graph of the function are \"\" and \"\", where \"image\" is an integer.