Step 1:

\

The function is \"\".

\

Power rule of logarithms: \"\".

\

Rewrite the function using above formula.

\

\

\"\"

\

\"\"

\

Domain of logarithm function \"\" is defined for \"\" or \"\" in interval notation.

\

\"\"

\

Therefore  domain set of \"\" is \"\".

\

Range of the logarithm function \"\" is defined as \"\".

\

Therefore  range set of \"\" is \"\".

\

Vertical asymptote of the logarithmic function \"\" is  \"\".

\

Therefore Vertical asymptote of \"\" is \"\" or \"\"-axis.

\

Step 2:

\

Find the inverse function of \"\".

\

Consider \"\".

\

The inverse function is defined implicitly by the equation \"\".

\

\"\"

\

Solve for \"\".

\

Common logarithm function: \"\" if and only if \"\".

\

\"\"

\

If \"\" , then \"\".

\

Therefore the inverse function is  \"\".

\

Find the domain and range of \"\".

\

Domain set of \"\" is \"\" and range set is \"\".

\

Here \"\", so the domain set of  \"\" is \"\" and

\

Range set of \"\" is \"\".

\

Step 3:

\

Graph:

\

Graph the function \"\".

\

 \"\"

\

 

\

Graph the inverse function \"\"

\

\"\".

\

Solution:

\

Domain set of \"\" is \"\".

\

Range set of \"\" is \"\".

\

Inverse function of \"\"  is  \"\".

\

Domain set of  \"\" is \"\".

\

Range set of \"\" is \"\".

\