Step 1:

\

The rational function \"\"

\

Find the horizontal asymptote :

\

Since degree of numerator less than the degree of denominator, the horizontal asymptote \"\".

\

Find the vertical asymptotes by solving zeros of denominator.

\

\"\"

\

\"\"

\

\"\"

\

There is no vertical asymptotes.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Step 2:

\

Find the critical numbers by equate the first derivative to zero.

\

\"\"

\

The function \"\" does not exist when \"\".

\

The denominator does not have real roots.

\

Equate the numerator of \"\" to zero.

\

\"\"

\

\"\"

\

\"\"

\

Substitute the values of \"\" in original function.

\

\"\"

\

\"\"

\

Critical points are \"\" and \"\".

\

Consider the test intervals as\"\"  and \"\"

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Interval Test Value \

Sign of  \"\"

\
Conclusion
\"\"\"\" \

\

\"\"

\
Decreasing
\

\"\"

\
\"\" \

\

\"\"

\
Increasing
\"\"\"\" \

\

\"\"

\
Decreasing
\

 The function is increasing on the interval \"\".

\

And the function is decreasing on the intervals  \"\" and \"\"

\

Step 3:

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Find the inflection points by equate the second derivative to zero.

\

The function \"\" does not exist when \"\".

\

The denominator does not have real roots.

\

Equate the numerator of \"\" to zero.

\

\"\"

\

\"\"

\

\"\"

\

\"\" and \"\"

\

\"\" and \"\"

\

Substitute the values of \"\" in original function.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Inflection points are \"\", \"\" , \"\"

\

Consider the test intervals as \"\"  and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Interval Test ValueSign of  \"\"Conclusion
\"\"\"\" \

\"\"

\
Down
\

\"\"

\
\"\" \

\"\"

\
Up
\

\"\"

\
\"\" \

\"\"

\
Down
\"\"\"\" \

\"\"

\
Up
\

Graph:

\

Draw the coordinate plane.

\

Plot the critical points and inflection points of the curve.

\

\"\"

\

Solution:

\

Horizontal asymptote \"\".

\

\"\".