Step 1 :

\

 (a)

\

Thu function \"\" and the interval is \"\".

\

Differentiate with respect to \"\" :

\

\"\"

\

Determination of critical points:

\

The critical points exist when \"\".

\

Equate \"\" to zero:

\

\"\"

\

Solve \"\" in the interval \"\".

\

\"\"

\

General solution of \"\" is \"\", where \"\" is an integer.

\

\"\".

\

If \"\", \"\".

\

If \"\", \"\".

\

If \"\", \"\".

\

If \"\", \"\".

\

The solutions are \"\" in the interval \"\".

\

Solve \"\" in the interval \"\".

\

\"\"

\

General solution of \"\" is \"\", where \"\" is an integer.

\

\"\".

\

If \"\", \"\".

\

If \"\", \"\".

\

The solutions are \"\" in the interval \"\".

\

The critical points are \"\" and the test intervals are \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Interval Test Value Sign of \"\"Conclusion
\"\" \"\" \

\"\"

\
Increasing
\"\" \"\" \

\"\"

\
Decreasing
\"\" \"\" \

\"\"

\
Decreasing
\"\" \"\" \

\"\"

\
Increasing
\"\" \"\" \

\"\"

\
Increasing
\

The function is increasing on the intervals \"\", \"\" , and \"\".

\

The function is decreasing on the intervals \"\" and \"\".

\

Step 1 :

\

Thu function \"\" and the interval is \"\".

\

The critical points are \"\".

\

\

Find the values of \"\" at these critical points.

\

\"\"

\

\"\"

\

Step 3 :

\

Find the values of \"\" at the end points of the interval.

\

\"\"

\

\"\"a

\

Compare the four values of \"\" to find absolute maximum and absolute minimum.

\

Absolute maximum value is \"\"

\

Absolute minimum value is \"\"

\

Solution:

\

Absolute maximum value is \"\" \"\"

\

Absolute minimum value is \"\"