Step 1:

\

The  integral is  \"\".

\

Rewrite the integral into two parts .

\

\"\"

\

Evaluate the first part.

\

\"\"

\

\"\"

\

Now consider the second part.

\

\"\"

\

Let \"\".

\

Since \"\", we can interpret this integral as the area under the curve \"\" over the interval \"\" .

\

Graph the function \"\".

\

\"\"

\

Apply squaring on each side.

\

\"\"

\

The graph shows that the \"\" is the quarter-circle with radius \"\" in figure.

\

Therefore 

\

\"\"

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"