Step 1 :

\

 (a)

\

Find the y - intercept :

\

The function \"\".

\

Let the function \"\"

\

Find the y - intercept, by substituting \"\" in \"\".

\

\"\".

\

The y - intercept is zero.

\

Step 2 :

\

(b)

\

The function \"\" and the interval is \"\".

\

Differentiate the function with respect to \"\" :

\

\"\"

\

Determination of critical points :

\

The critical points exist when \"\".

\

Equate \"\" to zero:

\

\"\"

\

Solve \"\" in the interval \"\".

\

\"\"

\

General solution of \"\" is \"\", where \"\" is an integer.

\

General solution is \"\"

\

If \"\", \"\".

\

If \"\", \"\".

\

The solutions are \"\" in the interval \"\".

\

The critical points are \"\" and the test intervals are \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Interval Test Value Sign of \"\"Conclusion
\"\" \"\" \

\"\"

\
Decreasing
\"\" \"\" \

\"\"

\
Increasing
\"\" \"\" \

\"\"

\
Decreasing
\

The function is increasing over the interval \"\".

\

Step 3 :

\

(c)

\

The function \"\" and the interval is \"\".

\

The critical points are \"\".

\

\

Find the values of \"\" at these critical points.

\

\"\".

\

\"\".

\

Find the values of \"\" at the end points of the interval.

\

\"\".

\

\"\".

\

Compare the four values of \"\" to find the absolute maximum.

\

Absolute maximum value is \"\".

\

Step 4 :

\

(d)

\

The function \"\" and the interval is \"\".

\

\"\"

\

General solution of \"image\" is \"image\", where \"image\" is an integer.

\

General solution : \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

The solutions are \"\" in the interval \"\".

\

Step 5 :

\

(e)

\

The function \"\" and the interval is \"\".

\

\"\"

\

General solution of \"image\" is \"image\", where \"image\" is an integer.

\

General solution : \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

The solution is \"\" in the interval \"\".

\

 

\

\"\"

\

General solution of \"image\" is \"image\", where \"image\" is an integer.

\

General solution : \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

If \"\", \"\".

\

The solution is \"\" in the interval \"\".

\

Step 6 :

\

(f)

\

\"\"

\

General solution of \"image\" is \"image\", where \"image\" is an integer.

\

General solution : \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

If \"image\", \"\".

\

If \"\", \"\".

\

The solution is \"\" in the interval \"\".

\

Step 7 :

\

(g)

\

 Find the x - intercept :

\

The function \"\".

\

Let the function \"\".

\

Find the x - intercept, by substituting \"\" in \"\".

\

 

\

\"\"

\

General solution of \"image\" is \"image\", where \"image\" is an integer.

\

General solution is \"\", where \"image\" is an integer.

\

The x - intercept are \"\", where \"image\" is an integer.

\