\

Step 1:

\

The integral expression is \"image\" on interval \"image\".

\

 The expression is \"image\"

\

Consider \"image\".

\

Using summation theorem :

\

If \"\" is integral on \"\", then \"image\".

\

Where \"image\", \"image\" and \"image\".

\

The integral expression is \"image\".

\

Step 2:

\

Here \"image\" and \"image\".

\

\"image\"

\

\"image\"

\

Substitute \"image\" in \"\".

\

\"image\".

\

\"image\".

\

Step 3:

\

substitute \"image\" values from 1 to 4.

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

Step 4:

\

 using mid point theorem Area =\"image\".

\

\"image\"

\

\"image\".

\

Solution:

\

Area of the function is \"image\".

\
\