Step 1:

\

The trigonometric function is \"\" in the interval \"\".

\

\"\".

\

From Pythagorean theorem,

\

The square of the hypotenuse is equal to sum the squares of the other two sides.

\

\"\"

\

\"\".

\

Where \"\" lies in quadrant I.

\

In quadrant I, the six trigonometric functions are positive.

\

\"\".

\

Step 2:

\

(a)

\

Find \"\".

\

Use double-angle formula : \"\".

\

\"\"

\

Substitute \"\" and \"\" in above expression.

\

\"\"

\

\"\".

\

Step 3:

\

(b)

\

Find \"\".

\

Use double-angle formula : \"\".

\

\"\"

\

Substitute \"\" and \"\" in above expression.

\

\"\"

\

\"\".

\

Step 4:

\

(c)

\

Find \"\".

\

Use half-angle formula : \"\".

\

\"\"

\

Substitute \"\" in above expression.

\

\"\"

\

Where \"\" lies in quadrant I, since \"\" lies in quadrant I.

\

\"\".

\

Step 5:

\

(d)

\

Find \"\".

\

Use half-angle formula : \"\".

\

\"\"

\

Substitute \"\" in above expression.

\

\"\"

\

Where \"\" lies in quadrant I, since \"\" lies in quadrant I.

\

\"\".

\

Solution :

\

(a) \"\".

\

(b) \"\".

\

(c) \"\".

\

(d) \"\".