Step 1:

\

The Curve is \"\", \"\" and \"\".

\

Length of the curve:\"\".Here \"\".

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\"                  (Since \"\")

\

\"\".

\

\"\".

\

\"\"

\

\"\"

\

Simpsons rule:

\

Let \"\" be continuous on \"\" let \"image\" be an even integer,

\

The Simpsons Rule for approximating \"image\"  is given by

\

\"\",

\

where \"image\" and  \"\"

\

\

Here \"\".

\

\"\"

\

\"\" 

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

 

\

\"\"

\

\"\"

\

\"\"

\

 

\

\"\"

\

Substitute all above values in Equation (1).

\

\"\"

\

\"\"

\

Using simpsons rule arc length of the curve is \"\".

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\