Step 1:

\

The parametric equations are \"\" and \"\" and \"\".

\

Consider \"\".

\

\"\"

\

Similarly \"\".

\

Trigonometric identity : \"\".

\

Substitute \"\" and \"\" in the above identity.

\

\"\"

\

The above equation is in form of general form of ellipse.

\

So the particle moves in elliptical path.

\

Draw a table for different values of \"\" ranging from \"\".

\

Determine the direction of the curve.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Step 2:

\

Graph

\

(1) Draw the coordinate plane.

\

(2) Plot the points obtained in the table.

\

(3) Determine the directions of the curve.

\

\"\"

\

Observe the graph:

\

From \"\" to \"\", the ellipse completes it first revolution in clockwise.

\

Similarly the ellipse completes it second and third revolution at \"\" and \"\".

\

The motion of the particle is clockwise.

\

Solution:

\

The motion of the particle is clockwise.

\

\"\"