Step 1:

\

The function is \"\".

\

Find \"\" such that  \"\"  whenever \"\".

\

Definition of limit:

\

Let \"\" be a function defined on an open interval containing \"\" and let \"\" be a real number.

\

The statement \"\" 

\

means that for each \"\", there exists a \"\" such that \"\", then \"\".

\

Step 2:

\

\"\"  whenever \"\".

\

We need to establish a connection between \"\"  and \"\".

\

Consider \"\"

\

\"\"

\

Subtract \"\" from each side.

\

\"\"

\

Since \"\",

\

\"\"

\

Compare the above with \"\", then \"\".

\

Solution:

\

\"\".

\

 

\

 

\

 

\

Step 1:

\

(2)

\

Find \"\" such that  \"\"  whenever \"\".

\

Definition of limit:

\

Let \"\" be a function defined on an open interval containing \"\" and let \"\" be a real number.

\

The statement \"\" 

\

means that for each \"\", there exists a \"\" such that \"\", then \"\".

\

Step 2:

\

\"\"  whenever \"\".

\

Consider \"\"

\

\"\"

\

Observe the graph:

\

\"\"

\

Compare \"\" and \"\".

\

Lower values:

\

\"\"

\

Upper value:

\

\"\"

\

The values of \"\" are 0.1 and 0.3

\

Solution:

\

The values of \"\" are 0.1 and 0.3.

\

\

\

\