Step 1:

\

The limit function is \"\".

\

The function is \"\".

\

Definition of the limit :

\

Let \"\" be a function defined on an open interval containing \"\" and let \"\" be a real number.

\

The statement is \"\"

\

means that for each \"\" there exists a \"\" such that if \"\", then \"\".

\

Step 2:

\

From the definition :

\

\"\"

\

 

\

\"\"

\

Step 3:

\

For \"\" :

\

Find \"\" such that  \"\"  whenever \"\".

\

Definition of limit:

\

Let \"\" be a function defined on an open interval containing \"\" and let \"\" be a real number.

\

The statement \"\" 

\

means that for each \"\", there exists a \"\" such that \"\", then \"\".

\

Step 4:

\

\"\"  whenever \"\".

\

\ \

\

We need to establish a connection between \"\"  and \"\".

\

Consider \"\"

\

\"\"

\

Since \"\",

\

\"\"

\

Compare the above with \"\", then \"\".

\

Step 5:

\

For \"\" :

\

Find \"\" such that  \"\"  whenever \"\".

\

\"\"  whenever \"\".

\

We need to establish a connection between \"\"  and \"\".

\

Consider \"\"

\

\"\"

\

Since \"\",

\

\"\"

\

Compare the above with \"\", then \"\".

\

Solution:

\

(a) \"\" and \"\".

\

(b) \"\".

\

     \"\".

\

\

\

\