\

\

 

\

\

\

 

\

 

\

 

\

\

 

\

\

Step 1 :

\

\

 

\

Rotation formula :

\

If the x and y-axes are rotated through an angle \"\", the coordinates \"\" of a point P relative to the xy-plane and the coordinates \"\" of the same point relative to the new x and y-axis and are related by the formulas \"\" and \"\".

\

\

 

\

 

\

The general form is \"\"

\

The angle is \"\"

\

Step 2 : The equation is \"\".

\

Compare \"\" with \"\"

\

\"\" and \"\".

\

Substitute \"\" and \"\" in \"\"

\

\"\"

\

\"\"

\

 

\

\

Use Pythagorean theorem :

\

\

 

\

\

 

\

 

\

 

\

\

\"image\"

\

\

 

\

\

 

\

 

\

\"\" 

\

 \"\"

\

Step 3 :

\

Half angle formula of sine function is \"\".

\

Substitute  \"\" in above equation.

\

\"\"

\

\"\"

\

Half angle formula of cosine function is \"\".

\

Substitute  \"\" in above equation.

\

\"\"

\

\"\"

\

Step 4 : 

\

Rotation of x-axis :

\

\"\".

\

Substitute \"\" and \"\" in above equation.

\

\"\"

\

Rotation of y-axis :

\

\"\".

\

Substitute \"\" and \"\" in above equation.

\

\"\"

\

The rotation formulas are \"\" and \"\"..

\

Solution :

\

The rotation formulas are \"\" and \"\".