Step 1:

\

(a)

\

The parametric equations are \"\" and \"\" and interval of graph is \"\".

\

Construct a table for different values of t.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
t\"\"\"\"\"\"\"\"\"\"\"\"\"\"
x\"\"\"\"\"\"\"\"\"\"\"\"\"\"
y\"\"\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"
\

Graph:

\

Draw the coordinate plane.

\

Plot the point obtained from the table.

\

Connect the points to a smooth curve.

\

\"\"

\

Observe the graph:

\

From \"\" to \"\", the ellipse completes it first revolution in clockwise.

\

 

\

Step 2:

\

The parametric equations are \"\" and \"\".

\

Consider \"\".

\

\"\"

\

 

\

Consider \"\".

\

 

\

\"\"

\

Trigonometric identities : \"\".

\

\"\"

\

\"\"

\

Rectangular equation of the curve is \"\".

\

Solution:

\

Graph of the curve is

\

 

\

\"\"

\

 

\

Rectangular equation of the curve is \"\".

\

 

\