The polynomial T (b )= 245 b3 - 161b2 - 17b + 5 = 0 \ \

\

Identify Rational Zeros  

\

Usually it is not practical to test all possible zeros of a polynomial function using only synthetic substitution. The Rational Zero Theorem can be used for finding the some possible zeros to test.

\

Rational Root Theorem : If a rational number in simplest form p/q  is a root of the polynomial equation anxn + an  1xn – 1 + ... + a1x + a0 = 0, where p  is a factor of a0 and q  is a factor if an. \ \

\

If p/q  is a rational zero, then p  is a factor of 5 and q  is a factor of 245. \ \

\

The possible values of p  are  ± 1 and ± 5. \ \

\

The possible values for q  are ± 1, ± 5, ± 7, ± 35, ± 49 and ± 245. \ \

\

By the Rational Roots Theorem, the only possible rational roots are, p/q =± 1, ± 1/5, ± 1/7, ± 1/35, ± 1/49,  ± 5, ± 5/7, ± 5/7 and ± 5/49. \ \

\

Make a table for the synthetic division and test possible real zeros.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

p/q

\
\

245 \ \

\
\

-161 \ \

\
\

-17 \ \

\
\

5 \ \

\
\

1 \ \

\
\

245 \ \

\
\

84 \ \

\
\

67 \ \

\
\

72 \ \

\
\

-1 \ \

\
\

245 \ \

\
\

-406 \ \

\
\

389 \ \

\
\

-384 \ \

\
\

-1/5 \ \

\
\

245 \ \

\
\

-210 \ \

\
\

25 \ \

\
\

0 \ \

\
\

Since T (-1/5) = 0, b  =  -1/5 is a zero. The depressed polynomial is  245b2 - 210b + 25 = 0. \ \

\

Since the depressed polynomial of this zero, 245b2 - 210b + 25, is quadratic, use the factorization to find the roots of the related quadratic equation 49b2 - 42b + 5 = 0. \ \

\

49b2 - 42b + 5 = 0 \ \

\

49b2 - 35b - 7b + 5 = 0 \ \

\

7b (7b - 5) - 1(7b - 5) = 0 \ \

\

(7b - 5)(7b - 1) = 0 \ \

\

7b - 5 = 0 and 7b - 1 = 0 \ \

\

b = 5/7 and b = 1/7 \ \

\

The cubic polynomial has three real zeros are b = -1/5, b = 5/7 and b = 1/7. \ \

\

There are no imaginary zeros. \ \

\

Solution: \ \

\

The cubic polynomial has three real zeros are b = -1/5, b = 5/7 and b = 1/7. \ \

\

There are no imaginary zeros. \ \

\

\ \