Step 1:

\

 

\

\

The function is\"\"

\

 

\

 

\

\

Find the successive differentiation of \"\".

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

Centered at \"\".

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

Step 2:

\

\

 

\

\

 

\

 

\

 

\

\

Definition of Taylor series:

\

\

 

\

\

 

\

 

\

 

\

\

If a function \"\" has derivatives of all orders at \"\" then the series

\

\

 

\

\

 

\

 

\

\"\" is called Taylor series for \"\" at \"\".

\

Find the Taylor series for \"\".

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

Substitute the above values in Taylor series.

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\"

\

\

 

\

\

 

\

 

\

 

\

\

\"\".sollution:

\

Taylor series of \"\" is \"\".