Step 1:

\

The function \"\".

\

From the Taylor polynomial is fifth degree polynomial.

\

Formula: \"\"

\

\"\" in \"\".

\

\"\"

\

\"\"

\

Error\"\"

\

\"\"

\

\"\"

\

The error cannot exceed 0.001.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Solution:

\

\"\".

\

 

\

Second way: in Q&A.

\

Step 1:

\

The function \"\".

\

Taylors theorem:

\

If a function \"\" is differentiable through order \"\" in an interval \"\" containing \"\", then for each \"\" in \"\",there exist \"\" between \"\" and \"\" such that , \"\",

\

where error \"\".

\

Here \"image\" and \"image\".

\

From the Taylor polynomial it is fifth degree polynomial.

\

Determine \"\" by substituting corresponding values in \"\".

\

\"\" in \"\".

\

\"\"

\

\"\"

\

Step 2:

\

Error\"\"

\

The error cannot exceed 0.001 implies that \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Solution:

\

\"\".

\

 

\