Step 1: \ \

\

The polar equation is \"\". \ \

\

\"\" \ \

\

Convert the equation into the conic form \"\". \ \

\

where \"image\" is the eccentricity and \"image\" is the distance between the focus(pole) and the directrix. \ \

\

\"\" \ \

\

\"\" \ \

\

Compare with \"\". \ \

\

\"\" \ \

\

Since \"\", the equation represents an ellipse. \ \

\

Step 2: \ \

\

Graph the above polar equation using some polar coordinates. \ \

\

Construct a table for different values of \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

Graph:

\

Draw the polar coordinate plane.

\

Plot the  polar coordinates found in the table.

\

Connect the points with smooth curve. \ \

\

\"\" \ \

\

Observe the graph: The ellipse eccentricity \"\" and distance \"\".

\

Solution: \ \

\

Eccentricity \"\". \ \

\

Distance \"\". \ \ \ \