Step 1:

\

\"\"

\

\"\"

\

Sum rule of derivatives : \"\".

\

\"\"

\

\"\"

\

\"\"

\

Step 2:

\

To find the critical numbers of \"\", equate \"\" to zero.

\

\"\"

\

\"\" \"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

for \"\".

\

\"\"

\

\"\"

\

for \"\".

\

\"\"

\

\"\"

\

\"\"not in the region.

\

Critical points in the given interval are \"\".

\

So the test intervals are \"\", \"\" and \"\"

\

Step 3:

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalsTest Valuesign of \"\"conclusion
\"\" \

\"\"

\
\"\"increasing
\"\" \

\"\"

\
\"\"decreasing
\"\" \

\"\"

\
\"\"increasing
\

Extremes :

\

If \"\" on an open interval extending left from \"\" and \"\"on an open interval extending right from \"\", then f has a relative maximum at \"\".

\

\"\"

\

\"\"

\

If \"\" on an open interval extending left from \"\" and \"\" on an open interval extending right from \"\" , then f has a relative minimum at \"\" .

\

\"\"

\

Solution :

\

Maximum =\"\"

\

Minimum=\"\"\"\"

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalsTest Valuesign of \"\"conclusion
\"\" \

\"\"

\
\"\"increasing
\"\" \

\"\"

\
\"\"decreasing
\"\" \

\"\"

\
\"\"increasing
\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\