(1)

Step 1:

The function is \"\\\\f\\left

Let \"\\\\f\\left.

\"y=e^{x}+e^{-x}\\rightarrow\\left

\"\\\\f\\left

Differentiate with respective x.

\"\\\\f\'\\left

Sum rule of derivatives : \"\".

\"f\'\\left

\"f\'\\left

\"f\'\\left.

Step 2:

To find the critical numbers of  \"f\\left, equate \"f\'\\left to zero.

\"f\'\\left.

\"e^{x}.

\"e^{x}

\"\\\\e^{2x}-{1}

Apply logrithm on each side.

\"\\\\\\ln

Substitute \"x=0\" in equation (1).

\"\\\\y=e^{0}+e^{\\left

\"y=2\".

Critical values are : \"x=0\" and \"y=2\".

Solution :

Critical values are : \"x=0\" and \"y=2\".

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

Step 1:

The function is \"\\\\g\\left

Let \"\\\\g\\left.

\"\\\\y=x^{3}\\ln

\"\\\\g\\left

Differentiate with respective x.

\"\\\\g\'\\left

Product rule of derivatives : \"\\frac{d}{dx}\\left.

\"g\'\\left

\"g\'\\left

\"\\\\g\'\\left

Step 2:

To find the critical numbers of  \"g\\left, equate \"g\'\\left to zero.

\"x^{2}\\left

\"x^{2}=0\" and \"(1+3\\ln

since \"x=0\" is not in the domain so \"x=0\" is not consider.

\"\\ln

\"x

\"x=0.71\"

Substitute \"x=0\" in equation (1).

\"\\\\y=\\left

\"y=-0.122.\"

Critical values are : \"x=0.71\" and \"y=-0.122.\".

Solution :

Critical values are : \"x=0.71\" and \"y=-0.122.\".