Step 1:

The function is \"f(x)=\\ln.

The linear approximation of a function is \"L(x)=f(a)+f\'(a)(x-a)\".

Find the derivative of the function at \"x=a\".

\"\\\\

Now put \"x=a\" in \"f(x)=\\ln.

\"f(a)=\\ln

Step 2:

\"L(x)=f(a)+f\'(a)(x-a)\"

\"L(x)=\\ln\\

Now find the  linear approximation at \"a=0\".

\"\\\\L(x)=\\ln\\

So the linear approximation at \"a=0\" is  \"\\\\L(x)=x\".

Step 3:

Now use the linear approximation to find the  \"\\ln and \"\\ln.

Rewrite  \"\\ln.

Now compare it with the function \"\\ln.

Here \"x=0.2\".

Now approximate for \"x=0.2\".

\"\\\\L(x)=x

Step 4:

Rewrite  \"\\ln.

Now compare it with the function \"\\ln.

Here \"x=0.01\".

Now approximate for \"x=0.01\".

\"\\\\L(x)=x

Step 5:

Now calculate \"\\ln and \"\\ln using calculator.

\"\\ln

\"\\ln

The second approximation is significantly better, since it is significantly closer to \"0\" than \"1.2\".

Solution :

(1) The linear approximation is \"\\\\L(x)=x\".

(2) \"\\\\L(0.2)=0.2\".

(3) \"\\\\L(0.01)=0.01\".

(4) The second approximation is more accurate.