Step 1:

\

The function is \"\", \"\".

\

Mean value theorem :

\

Let f be a function that satisfies the following three hypotheses :

\

1. f is continuous on \"\"

\

2. f is differentiable on \"\"

\

Then there is a number c in \"\" such that \"\" .

\

Step 2:

\

The function is \"\".

\

The function is continuous on the interval \"\".

\

Differentiate \"\" with respect to \"\".

\

\"\" \ \

\

The function is differentiable on the interval \"\".

\

Then \"\".

\

Step 3:

\

From the mean value theorem :

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

General solution of \"\" is \"\".

\

\"\"

\

If \"\" then \"\".

\

If \"\" then \"\".

\

\"\" are not in the interval \"\", hence they are not considered. \ \

\

Solution:

\

\"\".

\

 

\

 

\

 

\

 

\

Step 1:

\

(b)

\

The function is \"\", \"\".

\

Mean value theorem :

\

Let f be a function that satisfies the following three hypotheses :

\

1. f is continuous on \"\"

\

2. f is differentiable on \"\"

\

Then there is a number c in \"\" such that \"\" .

\

Step 2:

\

The function is \"\".

\

The function is continuous on the interval \"\".

\

Differentiate \"\" with respect to \"\".

\

\"\" \ \

\

The function is differentiable on the interval \"\".

\

Then \"\".

\

Step 3:

\

From the mean value theorem :

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\" are not in the interval \"\", hence it is not considered. \ \

\

Solution:

\

\"\".