Step 1:

\

The function is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Step 2:

\

Find the relative extrema by equating first derivative to zero.

\

\"\"

\

\"\"

\

\"\"

\

Apply zero product rule.

\

\"\" and \"\"

\

\"\" and \"\"

\

\"\" and \"\"

\

\"\" and \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

The point is \"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The point is \"\".

\

Step 3:

\

Find the nature of relative extrema, using second derivative test.

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
point \

\"\"

\
\"\"
sign of \"\"\"\"\"\"
ConclusionRelative maximumRelative minimum
\

The relative maximum at \"\".

\

The relative minimum at \"\".

\

Step 4:

\

Find the inflection points by equating the second derivative to zero.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\"  in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The inflection point is \"\".

\

Solution:

\

The relative maximum at \"\".

\

The relative minimum at \"\".

\

The inflection point is \"\".