Step 1:

\

The derivative function is  \"\" and \"\".

\

Integration of derivative function results the function it self. 

\

Consider \"\".

\

Integrate on  each side with respect to \"\".

\

\"\"

\

 

\

\"\"

\

Integral formulae:

\

\"\" and \"\"

\

\"\".

\

We have \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\".

\

Step 2:

\

A particle moves in a straight line.

\

Acceleration  of the  particle is \"\" and

\

Initial velocity is \"\" cm/s.

\

Initial displacement \"\" cm.

\

Anti derivative of the acceleration function is velocity.

\

\"\".

\

Integrate on  each side with respect to \"\".

\

\"\"

\

We have, \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\".

\

Anti derivative of the velocity function is position function.

\

\"\"

\

Integrate on  each side with respect to \"\".

\

\"\".

\

\"\".

\

Power rule of integration :\"\" and \"\".

\

\"\"

\

 

\

We have, \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\".

\

Position function of the particle \"\".

\

Solution:

\

1) \"\".

\

2)  Position function of the particle \"\".