\"image\"

\

Substitute x in the place of \"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

Multiply each side by negative one

\

\"image\"

\

Now use quadratic formula

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

But the range of sinx is [ 1 , -1 ] we can have only

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

By the second derivative it is locally minimum at

\

\"image\"

\

Substitute in given f(x)

\

\"image\"

\

\"image\"

\

Now check the end points f(0) = -5 and

\

\"image\"

\

\"image\"

\

= -2.595

\

So the maximum value of  

\

\"image\"

\

= -1.517

\

And the minimum value is f(o) = -5