\

(1)

\

Step 1:

\

The function is \"\"\"\".

\

Rolle\"\"s theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\" is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

The function \"\" is continuous over \"\", since it is a polynomial function. \ \

\

\"\".

\

\"\"

\

Substitute \"\" in the function.

\

\"\"

\

\"\".

\

Substitute \"\" in the function.

\

\"\"

\

Therefore  \"\".

\

Hence function \"\" satisfy the Rolle\"\"s theorem.

\

There exist at least one \"\" value in the interval \"\" ,such that \"\".

\

Step 2: \ \

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\"

\

 

\

\"\".

\

Equate it to zero.

\

\"\"

\

Hence \"\". \ \

\

The value of \"\".

\

2)

\

Step 1:

\

The function is \"\"\"\".

\

\"\"

\

Rolle\"\"s theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\" is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

The function \"\" is continuous over \"\" and differentiable on \"\", since it is a polynomial function. \ \

\

\"\".

\

Substitute \"\" in the function.

\

\"\"

\

\"\".

\

Substitute \"\" in the function.

\

\"\"

\

Therefore  \"\".

\

Hence function \"\" satisfy the Rolle\"\"s theorem.

\

There exist at least one \"\" value in the interval \"\" ,such that \"\".

\

Step 2: \ \

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\" 

\

\"\".

\

Equate it to zero.

\

\"\"

\

 

\

\"\" and \"\".

\

Hence \"\" and \"\". \ \

\

The values of \"\" are \"\".

\