7)

\

Step 1:

\

The function is \"\" on \"\".

\

The Mean Value Thereom:

\

If \"\" is continuous on the closed interval \"\"  and differentiable on the open interval \"\", then there exists a number \"\" in \"\" such that \"\".

\

The function \"\" is continuous on \"\" and diifferentiable on \"\".

\

In this case \"\".

\

Step 2:

\

Find \"image\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

Substitute the values of \"\" and \"\" in \"image\". \"\"

\

\"\".

\

Step 3:

\

The function satisfies the mean value theorem hypotheses, then there exists a number \"\" in \"\" such that \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

Substitute the value of \"image\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Solution:

\

\"\".

\