(2.a)

\

Step 1:

\

The function is \"\" on interval is \"\".

\

Number of rectangles are \"\". 

\

The sum of all circumscribed rectangle is upper sum.

\

\"\", where \"\".

\

Width \"\".

\

Find upper Sum.

\

Right end points : \"\".

\

Area of higher sum is \"\"

\

\"\"

\

Step 2:

\

Apply summation formula  \"\".

\

Apply summation formula  \"\".

\

Apply summation formula \"\".

\

\"\"

\

The area of higher sum is \"\".

\

Solution :

\

The area of the region is 2.37 sq-units.

\

 

\

(2.b)

\

Step 1:

\

The function is \"\" on interval is \"\".

\

Number of rectangles are \"\".

\

The sum of all inscribed rectangle is lower sum.

\

\"\", where \"\".

\

Width \"\".

\

\

Find lower Sum.

\

Left end points : \"\".

\

Area of lower sum is \"\".

\

\"\"

\

Step 2:

\

Apply summation formula  \"\".

\

Apply summation formula  \"\".

\

Apply summation formula \"\".

\

In this case \"\".

\

\"\"

\

The area of lower sum is \"\".

\

Solution :

\

The area of the region is 10.37 sq-units.

\

\

 

\

(2.c)

\

Step 1:

\

The function is \"\" on interval is \"\".

\

Number of rectangles are \"\".

\

Using mid point theorem:

\

The area is \"\".

\

Consider \"\".

\

Where \"\", \"\" and \"\".

\

Width \"\".

\

\"\"

\

\"\".

\

Mid points :

\

Substitute i values from 1 to 4.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Step 2:

\

Using mid point theorem :

\

Area =\"\"\"\"

\

The area of the region is 6.815 sq-units.

\

Solution :

\

The area of the region is 6.815 sq-units.