Step 1: \ \

\

The function is \"\" on interval \"\".

\

Number of rectangles are \"\".

\

The sum of all inscribed rectangle is lower sum.

\

\"\", where \"\".

\

Width \"\".

\

Step 2: \ \

\

\

Find lower Sum.

\

\"\"

\

\"\".

\

Lower sum is \"\".

\

\"\"

\

Apply summation formula \"\".

\

Apply summation formula  \"\".

\

Apply summation formula  \"\".

\

Apply summation formula  \"\".

\

In this case \"\".

\

\"\"

\

\"\".

\

\"\" 

\

The function is \"\" on interval \"\".

\

Number of rectangles are \"\".

\

Find upper Sum.

\

The sum of all circumscribed rectangle is upper sum.

\

\"\",

\

where \"\" is the right end point. \ \

\

\"\"

\

\"\".

\

Area of upper sum is \"\"

\

\"\"

\

Apply summation formula \"\".

\

Apply summation formula  \"\".Apply summation formula  \"\".

\

Apply summation formula  \"\".

\

\"\"

\

\"\".

\

 

\

\"\"

\

The function is \"\" on interval is \"\".

\

Number of rectangles are \"\".

\

\

Using mid point theorem:

\

The area is \"\".

\

Consider \"\".

\

Where \"\", \"\" and \"\".

\

Substitute \"\" in \"\".

\

\"\".

\

\"\".

\

Substitute \"\" in \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

Find \"\" values.

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Using mid point theorem:

\

Area =\"\".

\

\"\"

\

Substitute \"\" values.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\" sq-units.

\

Area of the region is \"\" sq units.

\

\"\"

\

Area of the region is \"\" sq-units.

\

The function is \"\" on interval \"\" is decreasing.

\

\"\".

\

\"\".\"\"

\

Verification:

\

\"\"

\

\"\"

\

\"\"

\

\"\".